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Gauss Second Proof

Paul Taylor

The fant that any non-traivial polynamial egquation has a root
in the fireld of ocomplex numbers will pe familiar te all
readers of  Eureka, Just  as 1t became  familiar to
Mathematlcians at some stage beblween the end of the Dark Ages
{ie the publication of the Ars Magna in 1540) and the
mathematical pirth of Gauss in 1796. The best known proof of
it oreurs 1n Part [B Complex Variables: for sufficiently large
values of the indeterminate, the highest degree term {27}
dominates and py Rouché's theorem the polynomial has the same
numpetr of zeroes as this single term, viz. n. This is not the
proal that interests us, however: we want a purely algebraic
proof for real closed fields. (See the previous article.)

later I shall give rhe modern two-line proof of this (due to
Artini. usinhg Galois' and Sylow's theorems, which muat somehow
be a descendant of the one given here. However the connecbion
19 difficult te spot, and the precise genealogy could easily
form the subject of a Phll thesis in the history and philosophy
of sgience, or indeed the basis of a book on the history of
modern algebra since the lemmas I shall state without comment
hint at the foundations of most branches of the subject. |
should be delighted to hear from any reader who can throw
light on some of the connections.

This article 18 a précis of my translation of Gauss' paper
[é}: I should like to thank Bernard Leak for his cgorrections
Lo my rusty Latin.

Proposition 1 (Euclid's algorithun for polynomials) Given two
polynomials Y{xj} and Y'(x), there are polynomials Z{x) and
2'(x} such that 2Y+2'Y' 18 the greatest common divisor of
¥, ¥'.

Corellary Y, Y' have no common factor 1ff ZY+2'Y'=l for some
Z, Z'.

Proposition 2 Any symmetris polynomial in n variables a.b, ...
may bpe expressed uniguely as the result of substituting o,-ZLa,
gg=kab, ..., op=la for 9,,...,8; 1n some polynomial in
311--;:@”.
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This result is frequently proved using independent
trapscendentals in a Galois Theory course; Gauss gave an
easier, prettier, constructive and more convincing proof which
the reader 1is invited to find for itself. Gaussg:® paper
consists largely of repeated use of this result, and employs
the convention that

Y is the polynomial xM-Sp.;xM 1+ . .38, with particular
determined coefficients and (possibly) roots A,B,...,

y is the polynomial xM-gp.3%M 1% . tg, with indeterminate
coefficients and no roots, and

v is the polynomial (x-a)(x-b)(x-c)... with coefficients
O3:...0n and roots a,b,c...
Other corresponding upper case Latin, lower case Latin and
lower case Greek letters are used similarly.

The discriminant of a polynomial v is the product
7 = (a-b)(a-c)...(b~a)(b-c)... and correspondingly those of ¥
and y are P and p respactively. ¥Y', y' and v' are used for
the formal derivatives of Y, y and v with reaspect to x.

Proposition 3 Y and Y' have a common factor iff P=0.

Gauss takes the opportunity here of being rude to his inferior
contemporaries. Of course the result is obvious for v, ie if
the polynomial factorises, but that is begging the guestion
(petitio principii). He spends several pages on the proof
(bringing various clever formulae out of a hat), but the
result is easy for us with abstract algebra (we do not suffer
from the handicap of believing in the real numbers) since it's
a triviality to construct field extensions containing the
required roots. We need only that ¥ and Y' factorise in some
field containing R, not necessarily C itself.

Given a polynomial (say of degree 2Kk with k odd) with zero
discriminant (which is really trying to say that it has a
repeated root), we may extract from it the common factoxr with
its derivative. Continuing this process inductively, any
polynomial may be split (rationally) into factors each of
which has a nonzero discriminant. Moreover the degree of at
least one of these factors will be 2Vl with 1 odd and w=g. The
proof will proceed by induction on the multiplicity of 2 as a
prime factor of the degree, whilst the degree itself will
increase astronomically.

Gauss now introduces a little elementary group theory { in the
form of a discussion of symmetric polynomials) before
proceeding in his usual fashion with a brilliant unmotivated
proof using another indeterminate u. Subscripts py and  will
be used for partial derivatives.

Let ¢ denote the product of all u-{at+b)xtab excluding
repetitions, and 2%, z the polynomials corresponding 1in the
usual way. By similar methods as before he proves

Proposition 4 If P#0 then the discriminant of Z with respect
to u cannot be identically zero as a function of x.
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For these who are at this point wondering where we are going,
I have to tell you that there are many more complicated
caiculations still to do, Moreover it is not until the very
last section that the real-closed hypotheses make the:r
Appearance.

Lemma Let $iu,x} denohte a product of any number of factors,
into each of which the variables u,x enter only ilinearly, ie
which are of the form atBu+yx, o'+8'u+y'x, a'+gMutyrx, ..,
ard w be another variable. Then the polynomial
fi = glurwgylu,xl, X-weylu,x}) is divisible by ¢(u,x).

Thig lemma 18 clearly applicable to the polynomial {, which we
may write as f{u,%,0,,0,5,...} B0 that

Flu+w 3¢

a¢ .
ax' *"%3yr %1r92r---)

is exactly divisible by ({: the quotient, which will be a
pulynomial wn o u,x,w,a.b,c,... symmetric in a.b,c,..., we may
write as ywiu,x,a,.b,0,...j. Hence

S *- SN - I~ S e
ffurw§§y E-Waror 1.8, o) 7 2 PlUuX.W, 8 ,8,,...)
antd
32 4% : ,
f{u+w§§. A-WIE, S1/83,...7 = 2 ¥(u, %, w,5;,55,...)

Then we may more simply write the polynomial Z as F{u,x) so
that

Flasedl, xwhy . Plux) Plaixows5,5,0 .. )

If we purt u=U, x=X, 8o that, say, dZ/dx=X', 3Z/3u=U', then we
ghall have

FiiswX', X-wU'y = F{U,X) (U, X, w,5;,8;,...)
Then as long as U' dopeant vanish, we may set w=(X-x)/U' to get

. ' X-x .
FIUSZaT~ = =59, %) = FLU,X) YU X, Z57.81,8,5,...)

Hence :f in Z we put u = U + XX',sU° ~xX'/U' 1t bhecomes

Px) v X258 88,0

When, in the case that P#3, the discriminant {wrt ) of the
polynomial Z=F{u,x) is a nonvanigshing functicn of x, clearly
the number of definite values of x for which the discriminant
of 2 can be U will be finite, 3o that there are infinitely
many choices for x giving a nenvanishing discriminant. Let X
be such a {(real} wvalue, so that the discriminant of the
polynomial F(u,.X) will be nonzero and so F(u,X) and Fpl(u,X)
have no common factor. Now let Uz suppose that there is some
definite (complex) value, gay U, of v satisfying F(u,X)=G, e
such that F(U,X1=0, so that (u-U) will be a factor of the
polynomial Flu,X) and not of Fulu.X}. Let the latter take the
value U' for u=U, so U'#0. Let X' be the value of Fy(u,x) for
u=ll, x=X. Then by the above result 2 will wvanish identically
by the substitut:ion y = U + XX'/U' - X'x/U' and 8o % 1is
divisible by the factor u + X'x/U' - (U + XX'/0').
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Hence F(x?2,x) is divisible by x? + xX'/U' - (U + XX'/U'} and
so has roots

-X' %/ 4UU'2 + 4XX'U' + X'?
20°

in C. Moreover it may easily be shown that for the same values
of x the polynomial Y must also vanish; for clearly
f(x?,%,0,,05,...) is the product of all (x-a)(x-b) excluding
repetitions and so equal to ym-1_ Hence it immediately follows

that F(x2,x)=Y™"1l, “which cannot vanish unless Y itself
vanishes.

With the help of the preceding discussion, the solution of the
equation Y=0 of degree n (where the discriminant of Y is
nonzero) is reduced to that of F(u,X)=0. It is appropriate to
observe that if all of the coefficients in Y are real
gquantities then so are those in F(u,X), since it is possible
t_:o make X real. The degree of the secondary equation P(u,X)=0
is n{n-1)/2, in which 2 occurs as a prime factor once less
often than in n (assuming n even).

If the discriminant of ¥ is zero, then as remarked above it
may pe split into factors whose discriminants do not vanish,
and it suffices to find a root of any of these.

We thus obtain a seguence of polynomial equations of degrees
2hoky, 2Hak),... with pgdpyduy>..., and hence ultimately one
of odd degree which may be solved by hypothesis {(or, obviously
in R). Moreover any solution to the last yields one for the
previous ones and hence the original equation, as required.

Now let us attempt to understand how this proof works in
modern terms. First, one may easily show from the Euclidean
algorithm in the same way as for 2 that

Proposition 5 Any polynomial in one variable over an arbitrary
field factorises into irreducibles, uniguely up to permutation
and multiplication by nonzero scalars.

Of course Causs will have been well aware of this, and it is a
little surprising thet he doesnt use the word irreducible. The
result may now be restated as follows:

Theorem 6 (CGauss) A non-trivial irreducible polynomial over R
is a scalar multiple of x? + 2ax + (a?+b?) and hence
factorises over C.

At this point 1 shall make use of our 170-year head start on
the master, which is the means by which I have already reduced
propesitions 3 and 4 to trivialities and hence cut down Gauss'
paper by three guarters. Let k be any field and f(x) an
irreducible polynomial over k. Let o be a new indeterminate
and denote by k(a) the vector space of polynomials in a over x
of degree less than that of f£; this has & multiplicative
structure given by setting mulitiples of f(a) Lo zaro.

45




NP

Propomition 7 kiay is a field containing k in which f(x)=0 has
a root . Moreover if [ 18 another field containing kX and a
root £ then there's a unigque embedding of k({a} into L which
preserves k and identifies a with 4.

The reader is invited to formulate and prove the uniqueness of
k{a}. 1t is an easy matter to show (in the same sense] that

Propeaition 8 Let k be any field and f(x) any polynomial over
1t. Thern there is a smallest field K containing k in which f
splits into linear factors.

¥ is called the gplitting fi1eld of £ over k; a field extension
fie an wnciusion of one field in another) is said to be nermal
1f 1t is of this form. A field extension is normal 1ff every
polynomial which 18 irreducible over the smaller field but has
& root in the larger actually splits in the larger ("one out -
all out®y.

Suppoas then we have a non-trivial irreducible polynomial Y(x])
over R with aplitting field K; we aim to show that K=C, ie the
dimension of K as a real vector space (which is called the
dogree of the extengsion K:R} is 2.

Now conmidsr Gauss' secondary poelynomial F(u,X). This clearly
splits in K, su its splitting field L is contained in K. On
the other hand the rookts of the original polynomial are
chtained from those of F{u,X) by solving some guadratics,
which 13 the pame as saying that K 1s obtained by adjoining
sume square roota to L. Hence, whilst the secondary eguation
may have much larger degree, 1t is in some sense no more
difficulit to solve, and indeed possibly eas:ier.

Repeating Gauss' construction, we obtain a descending seguence
of field extenaiona contained in K:R which 18 such that each
ig obtained from the next by adjoining square roots and the
last 13 the splitving field for an odd-degree polynomial.

Gaungs’ construction 18 a little stronger than this. In order
Lo conatruct K we do not need the splitting field of the whole
of the secondary polynomial F{u,X), but only of a non-trivial
irreducible factor. This 18 because Gauss only asks for a
single root of the seccndary polynomial in order to get a root
0of the orininal one, and since K is normal this is all we
need. Hence at the last stage it is sufficient to consider the
linear factor which an odd-degree polynomial is guaranteed to
have; the splitting field of this is of course just R.

Hence K., the splitting field of the original polynomial, 18
obtained by adjoining sguare roots toe R itself. But we can
only do this once because the existence of square rooks in C
18 an easy exsrcise. Hence K is indeed just C.

Now I shall give Artin‘s proof, quoting major theorems from
two Part Il courses; the word separable is included for purely
legal reasons, the condition being automatic for fields
containing Q.
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Theorem 9 (Galois) [4) Let K:k be a normal separable extension
of finite degree and let G be the group of field automorphisms
of K which fix each element of k. Then there 1s an order
reversing bijection beteen the subgroups H of G and the fields

L lying between k and K; moreover the degree of L:k is equal
to the index G:H.

Theorem 10 (Sylow) [3] Let G be a finite group of order p2m
where p is a prime not dividing m. Then ¢ has subgroups of
order pP for each Os=bea.

Applying this to the case in hand with p=2, K:R being the
splitting field of an irreducible polynomial Y, there is a
field L lying between R and K such that the degrees of K:L and
L:R are respectively a power of 2 and odd. L must be obtained
from R by adjoining roots of irreducible odd-degree
polynomials (which is impossible) and K from L by solving
quadratics. Hence L=R and K=L(i)=R(i)=C.

Two problems I shall leave to the reader are spotting the
theorem of the primitive element and the proof of Sylow's
theorem for p=2 (I believe one can generalise Gauss' method to
a proof of Sylow's theorem iy general). Of course Gauss does
not prove Galois' theorem because in Artin's proof this serves
merely to translate Sylow's theorem from (permutation) groups
to fields (and hence polynomials), whereas if one speaks the
local language fluently oneself one does not need an
interpreter.
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